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ABSTRACT: This paper discusses the problems arising from the presence of system bias in ocean data assimilation taking
examples from the ECMWF ocean reanalysis used for seasonal forecasting. The examples illustrate how in a biased system,
the non-stationary nature of the observing system is a handicap for the reliable representation of climate variability. It
is also shown how the bias can be aggravated by the assimilation process, as is the case for the temperature bias in the
eastern equatorial Pacific, linked to a spurious vertical circulation generated by the data assimilation.

A generalized algorithm for treatment of bias in sequential data assimilation has been implemented. The scheme allows
the control variables of the bias to be different from those for the state vector. Experiments were conducted to evaluate the
sensitivity of the results to the choice of bias variables. Results highlight the importance of the correct choice of variables
for the bias: while correcting the bias in the pressure field reduces the bias in temperature and in the velocity field, the
direct correction of the bias in the temperature field reduces the temperature bias, but significantly increases the error in
the velocity field.

Analysis of the error statistics reveals that the bias term is not constant in time, but exhibits large interannual fluctuations.
The bias algorithm has been generalized further to include temporal variations of the bias term. A memory factor is included
to allow for the slow variations of the bias, and a prescribed bias term is added to represent errors known a priori. Several
experiments have been conducted to illustrate the sensitivity of the results to the time evolution of the bias. Copyright 
2007 Royal Meteorological Society
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1. Introduction

Ocean data assimilation is a common practice for the
generation of historical climate reanalyses used in the
study of climate variability (Ji et al., 1995; Carton et al.,
2000; Stammer et al., 2002, among others). It is also used
for the initialization of seasonal forecasts with coupled
models (Behringer et al., 1998; Alves et al., 2004; Chen
et al., 2004; Huddleston et al., 2004). The benefits of
data assimilation in reducing the uncertainty in and
improving initial conditions for seasonal forecasts have
been demonstrated (Alves et al., 2004; Balmaseda, 2004;
Vidard et al., 2005). However, the procedure itself is not
without problems. It is often the case that the magnitude
of the time-averaged background error is comparable
to the random component, indicating sizeable system
bias. System bias is a serious obstacle to the reliable
representation of climate variability since, in its presence,
a time-dependent observing system can induce spurious
time variability in the analysis (Segschneider et al., 2000;
Balmaseda, 2004; Vidard et al., 2005). A deficient data
assimilation system may introduce error in the analysis
(Burgers et al., 2002; Bell et al., 2004). The problem
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of bias is not exclusive to the ocean data assimilation
systems; it is also an important issue in atmospheric
reanalysis (Dee, 2005).

Dee and Da Silva (1998) (DdS in what follows) devel-
oped an algorithm for the online estimation and correction
of the bias in sequential data assimilation. It was success-
fully applied by Dee and Todling (2000) to the global
assimilation of humidity observations in the Goddard
Earth Observing System (GEOS) data assimilation sys-
tem. The general algorithm was too costly for multivari-
ate bias estimation in a global system, since it required
an extra assimilation step to estimate the bias. A sim-
plified version of the algorithm using a single step was
first applied by Radakovitch et al. (2001) to land-surface
temperature assimilation. For a comprehensive review of
the different bias correction algorithms see Dee (2005).

Bell et al. (2004) (BMN in what follows) used the
simplified one-step DdS algorithm for the on-line estima-
tion of subsurface temperature bias in the tropical oceans.
However, in the BMN scheme the bias correction is not
applied directly to the temperature field, but applied as
a correction to the pressure gradient. The BMN method
was also applied by Huddleston et al. (2004) to diag-
nose errors in the wind stress forcing. The ideas of the
pressure correction have also been developed in paral-
lel outside the field of data assimilation by Sheng et al.
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(2001), and have been successfully applied to the correc-
tion of the Gulf stream representation in eddy-permitting
models (Eden et al., 2004).

The simplified one-step DdS algorithm requires pro-
portionality between the bias and state error covariance
matrices. In this regard, the BMN scheme deviates from
the DdS algorithm. Dee (2005) presents a more general
framework, where the bias and the state vector can use
different control variables. In this paper we derive the
corresponding one-step version of the Dee (2005) gener-
alized algorithm (G1S in what follows), and discuss the
approximations required. Although the derivation for the
G1S assumes linearity, the final algorithm is also valid
for the non-linear case. The G1S scheme encompasses
naturally the BMN scheme as a specific choice of bias
variable. The scheme can also be interpreted as a mul-
tivariate bias correction algorithm. The G1S scheme has
been implemented in the ECMWF ocean analysis system.
Sensitivity experiments have been conducted to assess
the impact of the specific choice of bias-variables on the
results.

The DdS bias correction algorithm requires the pre-
scription of a model for the time evolution of the bias.
The simplest and most widely-used model is that of
constant-in-time bias. Dee and Todling (2000) discuss
this assumption, pointing out the pitfall that a constant
bias allows a single observation to influence the bias
estimation indefinitely. The introduction of a memory
term may thus be desirable. Moreover, the systematic
error may not be constant in time: it may be flow-
dependent (e.g. depend on the diurnal or seasonal cycle),
or it may be associated with the non-stationary errors of
the external forcing (such as discontinuities in the atmo-
spheric analysis system that provides the surface fluxes).
In an application to land surface temperature assimila-
tion, Radakovitch et al. (2001) introduced a model for the
bias where the diurnal cycle is represented as a harmonic
function. Chepurin et al. (2005) formulated a compre-
hensive model for bias evolution that consists of the
online estimation of the multiplicative coefficients asso-
ciated with given patterns of spatial variability. Although
quite general and elegant, the method relies heavily on
the robustness and stationarity of the prescribed spatial
patterns, and its application to historical reanalysis of the
global ocean may be premature (for instance, the patterns
of error of subsurface temperature in the southern hemi-
sphere would be difficult to obtain from past records).
In this paper we choose a simpler model for the time
evolution of the bias term that allows us to discuss the
sensitivity of the solution to the prescribed parameters.

Chepurin et al. (2005) deals mainly with the time
evolution of the bias, but the multivariate aspects of the
bias are not dealt with: the bias is applied directly to
the temperature field (observed variable). On the other
hand, the BMN scheme, sophisticated in its treatment
of the bias variables, uses the assumption that the bias
is constant in time. The work presented in this paper
evaluates the sensitivity of the ocean analysis system
to these two aspects of the bias correction algorithm:

the choice of bias variables, including the multivariate
formulation of the bias covariance matrix, and the model
for the time evolution. The emphasis is on the equatorial
oceans, in particular the Pacific Ocean.

The paper is organized as follows: In section 2, the
outstanding problems arising from bias in the system are
illustrated with examples from the ECMWF operational
ocean analysis systems. Section 3 introduces a general-
ized one step algorithm for treatment of system bias,
based on Dee (2005). The formulation allows the balance
relationships in the bias error covariance matrix to be dif-
ferent from those in the state error covariance matrix. It
also allows for slow time evolution of the system bias.
The sensitivity to the multivariate formulation and to the
time evolution is discussed in section 4. The sensitivity
experiments allow us to discuss the merits of the BMN
pressure correction scheme versus the standard correction
of the bias in the temperature field, as in Chepurin et al.
(2005). The experiments also illustrate the importance of
limiting the memory of the bias term. A summary and
conclusions are given in section 5.

2. Bias in the ECMWF ocean analyses systems

2.1. ECMWF operational ocean data assimilation
systems

ECMWF has had an operational ocean analysis since
1996 as part of the seasonal forecasting system. In
January 2001, the data assimilation component of the
original operational system (System 1 or S1 in what
follows) was upgraded together with other components
in the seasonal forecasting suite. We refer to this second
operational analysis as System2 (S2), and at the time
of writing this is the current operational system. The
operational system consists of real-time as well as
historical ocean analyses, the latter being used as initial
conditions for the hindcasts to calibrate the seasonal
forecast system. A description of the two successive
ocean analysis systems is given in Balmaseda (2004)
and Alves et al. (2004). Here we just offer some concise
information.

The background state for the data assimilation is
produced by an ocean model forced by analysed surface
fluxes of momentum, heat and fresh water. The ocean
model is based on Hamburg Ocean Primitive Equations
(HOPE). The ocean data assimilation scheme is an
Optimum Interpolation (OI) scheme, and in the results
presented here only subsurface temperature data are
assimilated. The original system (S1) was univariate,
while S2 includes balance constraints to update salinity
and velocity, following the schemes proposed by Troccoli
et al. (2002) and Burgers et al. (2002) respectively.

Originally, the temperature data came from the Global
Temperature Salinity Profiling Project (GTSPP) at
National Oceanographic Data Center (NODC). These
include data from XBTs (eXpanthable Bathy Thermo-
graphs) mooring data from TAO, PIRATA and TRITON,
and more recently from the ARGO floats. Since 2004, the
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observations are taken directly from the Global Telecom-
munication System (GTS). An analysis is performed
every ten days, using observations which span a window
five days either side of the model background. There is no
temperature assimilation in the top model level; instead
the model SST (Sea Surface Temperature) is relaxed to
analysed SST (Reynolds et al., 2002) with a relaxation
time-scale of three days.

In this section we will consider four sets of analy-
ses: the operational analyses, called A S1 and A S2 for
systems S1 and S2 respectively, and the corresponding
control analyses (C S1 and C S2) without data assimi-
lation. Forcing fields from ERA-15 (Gibson et al., 1997)
are used until 1993, and fluxes from the operational atmo-
spheric analysis system after that. ERA-40 (Uppala et al.,
2005) was not available at the time of operational imple-
mentation of S2, but fluxes from ERA-40 will be used in
the experiments described in section 4.

2.2. Errors in the mean state

Figure 1a shows a vertical profile of the 1987–2001
mean difference between the analyses and the obser-
vations averaged over the Niño 3 area. The solid line
corresponds to A S2 and the dotted line C S2. Below
200 metres, A S2 is much less biased than C S2. In the
upper 200 metres both analyses are biased with respect
to the observations, although in opposite directions: the
analysis without data assimilation is too cold with respect
to the observations, while the analysis with data assim-
ilation is too warm. The data assimilation appears to be
overcorrecting the model errors. It could also be that the
errors in A S2 analysis are of a different nature to those
in C S2, as if the data assimilation procedure had become
a source of error itself.

To assess the impact of the data assimilation it is
important to use independent data such as the velocity
data provided by the TAO moorings. Figure 1b shows
the average zonal velocity at mooring location 110 °W.
The grey line represents the observations from TAO. The
velocities from A S2 and C S2 are represented by the
solid and dotted lines respectively. The maximum value
of the undercurrent is better reproduced by A S2 than
by C S2, which produces weaker-than-observed currents.
However, in the assimilation, the undercurrent is too
broad, and does not have a sharp maximum centred
around the thermocline as in the observations. The large
values of the zonal velocity beneath the thermocline
are associated with a spurious downwelling circulation
discussed in section 4. The degradation of the vertical
structure of the equatorial currents as a consequence
of the assimilation of temperature data is a common
feature in other assimilation systems (Burgers et al.,
2002; Vialard et al., 2003; Balmaseda, 2004; Huddleston
et al., 2004; Ricci et al., 2005), although it seems to be
absent in 4D-Var analyses (Weaver et al., 2003; Vialard
et al., 2003).

BMN suggested that spurious vertical circulations
induced by the assimilation may cause additional errors
in the temperature field. They went further to suggest
a possible positive feedback between errors induced by
the data assimilation (degradation of currents) and errors
in the model temperature field, that could lead to the
existence of a bias in the assimilation system different
from the bias in the system without data assimilation.
The BMN method is successful in reducing the spurious
circulations induced by the data assimilation, and as
a consequence, reduces the bias in the temperature
field.
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Figure 1. a) Vertical profiles of the 1987–2001 mean temperature statistics ‘observation minus analysis’, averaged over the Eastern Pacific (Niño
3 area). The solid line is for the A S2 operational ocean analysis, and the dotted line is for the C S2. The assimilation of data reverses the sign
of the system bias in the upper 150 m. b) Vertical profiles of the 1987–2002 mean zonal velocity at 110 °W. The grey line represents the TAO

current meter measurements. The solid line is for A S2 and the dotted line is for C S2.
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Figure 2. Time evolution of the low and high frequency components
of the assimilation increment from A S2 in the Niño 3 area at
100 m depth. The 24-month running mean is shown in black and the

high-frequency residuals are shown in grey. Units are oC/hour.

Figure 2 shows the time evolution of the temperature
increment from A S2 in the Eastern Pacific (Niño 3
area: 90 °W–159 °W, 5 °N–5 °S) at 100 m depth. The
24-month running mean of the assimilation increment,
representative of the low frequency component of the
error is shown in black. We equate this component of
the error to the bias, since it represents the part of the
error that is correlated in time, with time decorrelation
scales much larger than the assimilation cycle. The high-
pass residuals, representative of the random component
of the error, appear in grey. Note that the magnitude
of the low frequency component of error is not small
compared to the high frequency component and that
the low frequency component is not constant in time.
Particularly noticeable is the negative trend after 1998.
The changes in the bias may be due to changes (local or
remote) in the observation coverage (introduction of the
TRITON moorings in the Western Pacific, for instance).
They could also be due to the flow-dependent nature of
the error: during the cold phase of ENSO (El Niño and the
Southern Oscillation) (that started at the end of 1998) the
slope of the thermocline is very pronounced, which may
be difficult to simulate with a model that tends to produce
a flatter-than-observed thermocline (see discussion in
section 4). Or they could be caused by changes in the
surface fluxes associated with changes in the atmospheric
analysis. More work is needed to understand these trends,
but in any case, figure 2 highlights the non-stationarity of
the bias. Ideally, a bias correction algorithm should take
this into account.

2.3. System bias and interannual variability

In practice, the presence of system bias may lead
to spurious temporal variability in regions where the
observation coverage is not uniform in time, which may
be a serious problem when the ocean analysis is used to
represent interannual variability.

Figure 3a shows the time evolution of the sea level
in the equatorial Atlantic (70 °W–30 °E, 5 °N–5 °S) from
A S1 (black line). The most striking feature is the sudden

0.05

0.00

1980
(a)

(b)

1982 1984 1986 1988

Time

1990 1992 1994 1996 1998 2000

−0.05

−0.10

−0.15

−0.20

−0.25

80

60

40

20

0
1980 1982 1984 1986 1988

Time

1990 1992 1994 1996 1998 2000

Figure 3. Time evolution of a) the sea level (in metres) averaged over
the equatorial Atlantic (5N–5S), as represented by the A S1 (black
line) ocean analysis (S1) and by an ocean analysis prototype of S2,
where conservation of water masses characteristics is imposed (grey
line). b) Time evolution of the number of observations over the same

region used in the analysis.

decrease in the sea level around 1985. The C S1 (not
shown) does not exhibit any particular anomaly during
that time. An inspection of the time evolution of the
observations used in this analysis, shown in Figure 3b,
reveals a sudden increase in the number of observations
in the equatorial Atlantic that were assimilated around
January 1985. Other (smaller) sea level changes apparent
in the A S1 run occur when the observation coverage
changed: both the increase in the number of observations
around 1992 and the appearance of PIRATA moorings
around 1998 are associated with a decrease in the sea
level of the equatorial Atlantic. The latter was reported
by Segschneider et al. (2000).

The sudden jump in sea level in the A S1 run in Figure
3a is a side effect of the data assimilation. The data cor-
rects for a large error in temperature due to a very diffuse
thermocline (not shown). The correction requires a large
negative increment to the temperature field. Without the
corresponding balance correction to the salinity field, the
vertical stability of the water column is disrupted, and
the assimilation induces spurious convection. In A S1 the
salinity was not corrected after temperature assimilation,
whereas in A S2 it was.

The grey curve in Figure 3a shows the sea level
evolution of a prototype of S2, where the salinity is
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updated by applying conservation of the background state
T–S relationship. The abrupt jump of the sea level in
1985 is alleviated, but changes in the sea level associated
with the evolution of the observing system are still
noticeable. If changes in the observing system are very
sudden, it may be helpful to have an a priori estimate of
the bias in the system, as will be discussed in section 4.

3. The generalized bias-correction algorithm

3.1. Two-step generalized bias-correction algorithm

The standard procedure to deal with systematic error in
a data assimilation system is to augment the model state
with a set of systematic error or bias variables. Let x
represent a vector belonging to the n-dimensional vector
space X, and β is the vector of bias variables, belonging
to the r-dimensional bias space B. Let us define b(β)

as transformation from B into X that relates the bias
variables with the state vector variables. Following Dee
(2005), the generalized expression for the kth analysis
cycle of a data assimilation system is:

βa
k = β

f

k − Kβ

[
yo

k − H(xf

k − bf

k )
]

xa
k = (xf

k − ba
k) + Kx

[
yo

k − H(xf

k − ba
k)

]
, (1)

where the superscripts f and a refer respectively to
the forecast and analysis of a given variable, yo

k is the
observation vector, and ba

k and bf

k are the abbreviated
notations for b(βa

k) and b(β
f

k ) respectively. To define
the terms β

f

k and bf

k we need to prescribe a model for
the time evolution of the bias. This will be discussed in
section 3(c).

In the special case when b is linear in β, i.e.:

ba
k = b(βa

k) = Lβa
k , (2)

and assuming that the observations are unbiased and
that forecast and observation errors are uncorrelated, Dee
(2005) shows that the optimal gain matrices Kβ and Kx
for the bias and the state respectively are

Kβ = BβLT HT
[
H(Bx + LBβLT )HT + R

]−1

Kx = BxHT
[
HBxHT + R

]−1
, (3)

where Bx and Bβ are the error covariance matrices for
the forecasts of the unbiased state and for the bias
vector estimates respectively, and R is the observation
error covariance matrix. The original DdS bias correction
algorthim is a particular case of the above, where L is
taken as the identity, so that b ≡ β.

Equation (1) requires two analysis steps: one for
the bias estimation and a second for the state vector.
Assuming that the bias is nearly constant in time, and
that the bias error covariance matrix is proportional to the
forecast error covariance matrix, with the proportionality

constant γ small compared to one, the algorithm can
be approximated so it only requires one analysis step,
and thus the bias term can be updated at little extra
cost (Radakovitch et al., 2001; Dee, 2005). However
the requirement of proportionality between the bias and
forecast error covariance matrices is not reasonable in
the general case, where the bias and the model state
vector have different control variables and/or multivariate
balance relationships. In the following we derive an
alternative approximation for the one-step bias correction
algorithm for the general case.

3.2. Generalized one-step bias-correction algorithm

Reduction to a one-step algorithm can be obtained by
approximating the bias parameter update

dβk = −Kβ

[
yo

k − H(xf

k − bf

k )
]
, (4)

in terms of the unbiased state increment

dxk = Kx

[
yo

k − H(xf

k − ba
k)

]
, (5)

which is already computed in the assimilation algorithm.
If the bias is slowly varying in time, i.e.

||βa
k − β

f

k || � ||βa
k ||, (6)

then ba
k can be approximated by bf

k so that the terms
in the square brackets in Equations (4) and (5) become
identical. In this case, it is also reasonable to assume
that the bias estimation errors are much smaller than the
background errors, i.e.

||LBβLT || � ||Bx||. (7)

Therefore, the matrix terms in square brackets in Equa-
tion (3) are nearly identical. Note that approximations
in the error covariances are always made in practice
(Weaver et al., 2005). As a result the bias estimation will
be suboptimal but still consistent; see Dee and Todling
(2000). Finally, we write

Kβ = γ GKx, (8)

with γ a scalar � 1, and G a linear transformation which
maps model state into bias parameter space. Comparing
with Equation (3), Equation (8) implies a covariance
model for the bias parameter estimates which satisfies

BβLT = γ GBx. (9)

Let us now introduce the following variables for easy
notation:

x̃f

k = xf

k − bf

k

dx̃k = Kx

[
yo

k − Hx̃f

k

]
, (10)
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where x̃f

k ≈ xf

k − ba
k and dx̃k ≈ dxk . With this notation,

and the approximations in Equations (6), (7) and (9), we
can approximate the generalized two-step algorithm in
Equation (1) by a generalized one-step algorithm (G1S)
as follows:

xa
k = x̃f

k + dx̃k

βa
k = β

f

k − γ Gdx̃k. (11)

In the G1S scheme, the increments to the bias parame-
ters are derived from the state increment dx̃k , and there-
fore only one analysis step is needed. Furthermore, the
relationship G between the bias and the state increment
does not need to be diagonal, which introduces the pos-
sibility of different control variables and/or multivariate
relationships for the bias and state vector. In this way,
the generalized one-step scheme encompasses naturally
the BMN scheme (although in the general BMN scheme
the operators G and L are non-linear). For instance, in the
system described in section 2, the control variable of the
bias vector would be the pressure gradient, while the state
vector consists of the 3D temperature, salinity, velocity
and sea level fields (T,S, �U ,η). The pressure gradient cor-
rection (βa

k ) is derived from the analysis increments in
temperature (dx̃k) via the operator G. The final tempera-
ture bias ba

k , resulting from the operator L in Equation (2)
acting on βa

k , is the effect of applying the pressure gradi-
ent correction to the momentum equations and integrating
the model forward.

3.3. A prediction model for the forecast bias

We have seen in section 2 that the bias term evolves in
time, although slowly. The hypothesis of constant bias
could be relaxed to allow for the slow time evolution of
the bias without incurring large errors. Here we propose
a simple parametric model for the time evolution of the
bias. The rationale behind this simplification is to avoid
having to fit a large number of degrees of freedom with
a limited number of observations, while still retaining
some flexibility. In X space, we assume the bias term bf

k

evolves in time according to the following model:

β
f

k = αβa
k−1

b′f
k = Lβ

f

k

bf

k = b + b′f
k . (12)

The forecast bias is represented as the sum of two
terms: a prescribed bias term b, estimated a priori,
and a departure b′f

k from b. Only the departure b′f
k is

derived from the on-line estimation β
f

k . The on-line bias
estimation has finite memory, controlled by the factor
α. The introduction of the memory term will limit the
influence in time of isolated or sporadic observations. It
is a way of accounting for uncertainty in the estimation
of the bias term, which is proportional to the age of the
observations and it also has the potential to allow for

time-dependent bias. A side effect is that values of α less
than 1.0 will underestimate the magnitude of the bias. To
compensate for that, the constant term b is introduced in
(12).

The term b is not affected by the on-line estimation and
has to be estimated a priori, preferably with independent
information. If there is not enough information for
independent estimation, it can always be set to zero.
Apart from compensating for the damping effects of
the memory term, the inclusion of the a priori bias
term offers other practical advantages. For instance,
it provides a way to extrapolate into the past the
information given by more recent observing systems,
as opposed to the bias estimated on line βa

k , which
only uses past information. This is useful not just for
interpreting climate signals in ocean reanalyses, but
also for seasonal forecasting, since the reanalyses are
used for initial conditions. Thus, the a priori term
has the potential to provide a smoother analysis by
preventing abrupt changes in the analysis associated
with the introduction of new observing systems. The
prescribed term could also represent systematic errors
in, for example, the seasonal cycle. Finally, the a priori
estimation may contain information about other variables
or balance relationships not easy to estimate through
the on-line procedure. For simplicity, in Equation (12),
there is no explicit reference to the choice of multivariate
relationship for the a priori bias term b which belongs
to the space vector state X. For the on-line bias term,
Equation (12) retains the dual representation b′(f,a)

k , β
(f,a)

k

for the bias in X and B vector space respectively.

3.4. Implementation of the G1S algorithm

The implementation of the G1S algorithm makes use of
an auxiliary variable b̂

a

k belonging to the state vector
space X, from which the bias parameters are derived as:

b̂
f

k = αb̂
a

k−1

b̂
a

k = b̂
f

k − γ dx̃k

βa
k = Gb̂

a

k . (13)

From Equations (12) and (13) it follows that:

β
f

k = Gb̂
f

k

bf

k = b + LGb̂
f

k . (14)

It is important to notice that in the general case the
term b̂

f

k (used to estimate the bias parameters in Equation
(13)) is different from the term bf

k (used to remove the
bias from the state vector in Equation (12)), since LG
does not need to be the identity. This difference can
be illustrated taking as an example the BMN scheme
as implemented in the ECMWF system. In the BMN
scheme, the term b̂

f

k is temperature, estimated from the
temperature analysis increment. However, b̂

f

k does not
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affect directly the temperature in the model. Rather it is
used to estimate β

f

k which is a correction to the pressure
gradient. This then affects temperature through the model
equations, which in the bias algorithm will be embedded
in operator L.

Using equations (10)–(14), the algorithmic implemen-
tation of the G1S scheme becomes:

x̃f

k = xf

k − (b + αLGb̂
a

k−1)

dx̃k = Kx

[
yo

k − Hx̃f

k

]

xa
k = x̃f

k + dx̃k

b̂
a

k = αb̂
a

k−1 − γ dx̃k. (15)

In (15) it is clear that the estimation of the bias will
depend on the values of parameters α and γ that deter-
mine the time evolution of the on-line bias term, by
controlling its memory and amplitude respectively. The
bias estimation also depends on the prescription of b and
G. In section 4 we conduct a set of experiments to eval-
uate the sensitivity of the solution to these parameters.
When discussing the results we will refer to the variable
b̂

f

k in Equation (13), since in practice the term LGb̂
f

k

is not computed explicitly. For instance, in the BMN
scheme, the pressure correction is added to the model
pressure gradient in the momentum equations, so that
only one integration of the model equations is needed.

3.5. Observability of the bias variables

The robust on-line estimation of the bias in the G1S
scheme depends on properties of the operators L and
G. From Equation (11) the bias parameter updates
are restricted to the range of G (dβ ∈ �(G)), while
Equation (10) implies that the forecast bias corrections
are constrained by the range of LG (db ∈ �(LG)).
Furthermore, the observability of the bias variables will
be determined by the rank of HLG. To illustrate this
point more explicitly, let us focus on the particular case
b = 0. In this case, the assimilation increment for the
state vector, in terms of b̂, takes the form:

dx̃k = Kx

[
yo

k − Hxf

k + HLGb̂
f

k

]
. (16)

This relation shows the coupling between the bias and
the state vector variables: If the image of operator L lies
in the null space of H, or if b̂

f

k lies in the null subspace
of LG, there will no feedback between the bias variables
and the observations. The null space of LG are those
directions of the state vector that either are not affected
by the bias (i.e. do not belong to the image of L) or that
do not influence the estimation of βa

k (i.e. belong to the
null space of G).

4. Sensitivity experiments

4.1. Experimental setup

For the sensitivity experiments we use an up-to-date ver-
sion of the data assimilation system described in sec-
tion 2. The observations come from the more compre-
hensive and quality-controlled data set produced as part
of the ENACT project (Ingleby and Huddleston, 2006).
The forcing fields are derived from ERA-40, with the
modifications in the fresh water introduced by Troccoli
and Kallberg (2004). The version of the ocean model
is the same as for S2, but at lower resolution (2 × 2
degrees lat/lon with equatorial refinement). All the exper-
iments start from the same spin up and span the period
January 1987 – December 2001. Only subsurface tem-
perature data are assimilated, but salinity and currents are
updated through the multivariate relationships described
in section 2.

Table I shows the summary of the different experi-
ments. Experiment E0 was conducted as a control, with
standard assimilation and no bias correction. Three exper-
iments were conducted to test the sensitivity of the results
to the multivariate formulation of the bias: in experi-
ment PM , G was chosen to simulate the BMN scheme,
i.e. the information from the temperature observations
is used to correct the bias in the pressure gradient, but
no explicit correction is made to the bias in tempera-
ture; in experiment TM , only the bias in the temperature
field is corrected explicitly, as in Chepurin et al. (2005),
with no modifications to the bias pressure fields; and in
experiment T SM , the biases in both the temperature and
salinity fields are corrected (although only observations
of T are used). In all these experiments the bias term has
finite memory (with the value of α equivalent to 2-years
time-decay).

An additional set of experiments was conducted to
test the sensitivity to the parameters α and γ controlling

Table I. Summary of Experiments Conducted.

Experiment Time-decay
∼ (1 − α)−1

γ G
(T , S, ∇P)

b

(T , S, ∇P)

E0 0 (0, 0, 0) (0, 0, 0)

PM 2 Years 0.1 (0, 0,∇P) (0, 0, 0)

TM 2 Years 0.1 (T , 0, 0) (0, 0, 0)

T SM 2 Years 0.1 (T , S, 0) (0, 0, 0)

PMF 2 Years 0.3 (0, 0,∇P) (0, 0, 0)

PIF infinite (α = 1) 0.3 (0, 0,∇P) (0, 0, 0)

P
Mb

2 Years 0.1 (0, 0,∇P) (T , S, 0)

Experiment E0 is a standard data assimilation analysis, without bias
correction. In all the other experiments there is bias correction, their
names according to the following convention: the main one or two
letters indicate the choice of G (pressure gradient (∇P ), temperature
(T), or temperature and salinity (TS)); the subindices indicate the choice
of model for the time evolution of the bias: the memory term is
indicated by M/I in the first subindex, for limited/infinite memory
respectively. A subindex F indicates the faster adaptation of bias,
corresponding with larger values of γ . A subindex b is indicative of a
prescribed component in the bias.
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the time evolution and amplitude of the bias. In these
experiments the bias is applied to the pressure gradient,
as in PM . In experiment PMF the value of γ is increased
to 0.3 (i.e. the bias adapts faster) but the value of α is
still equivalent to a time-decay of 2 years. In experiment
PIF , α is set to 1.0, so the observations will influence the
bias estimate indefinitely, and γ = 0.3. In all the above
experiments (PM , TM , T SM , PMF and PIF ) b is zero.

Finally, experiment P
Mb

was used to evaluate the
importance of the prescribed bias. The term b contained
modifications to the temperature and salinity fields, and
zero correction to the pressure gradient. The term was
derived from a climatological model run, where the ocean
model was forced by climatological ERA-40 fluxes and
relaxed to the WOA98 climatology (Levitus et al., 1998)
with a time scale of 3 years. The b-term was estimated
as the annual mean of the corrections due to the WOA98.

4.2. Sensitivity to the multivariate formulation

The left column of Figure 4 shows the 1987–2001
average of a longitude-depth section of the assimilation
increments along the equator from experiments E0, TM

and PM (panels a, b and c respectively). The mean
increment in Figure 4a has a large-scale dipolar structure

in the equatorial Pacific, as if the data assimilation
were correcting the slope of the thermocline, making
it deeper in the western Pacific and shallower in the
eastern Pacific. This kind of error could appear if the
equatorial winds were too weak, although it may be
due to other mechanisms. In section 2, it was suggested
that the negative increment in the eastern Pacific is
in fact partly induced by the assimilation process. In
the experiments TM and PM , where the bias has been
corrected online, the resulting mean increment is smaller
(though it is not removed entirely since α < 1.), both
in the eastern and western Pacific. In TM , the reduction
of the mean increment in temperature is expected since
the bias correction acts directly in T. However, as will be
shown below, the smaller mean increment in temperature
does not guarantee a better analysis.

For a more impartial test of the performance of the
bias correction algorithms we need to look at independent
variables. The right column of Figure 4 shows an
equatorial cross-section of the vertical velocity for the
respective experiments in the left column. The spurious
vertical circulation in the eastern Pacific associated with
the degradation of the zonal current discussed in section 2
is evident in panel d. Correcting the bias only in
temperature degrades it even further (Figure 4e). The
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Figure 4. Equatorial longitude-depth section of mean temperature increment (left column) and vertical velocity (right column) for experiments
E0 (a and d), TM (b and e) and PM (c and f). Contours every 0.5 °C/10-days for the temperature increment and 0.5 m/day for the vertical
velocity. The zero contour is not plotted, and shading represents negative values. The mean corresponds to the time average during the period

1987–2001.
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behaviour is similar to, and consistent with, that observed
in experiments where the weight given to the observations
is increased: the equatorial currents are systematically
degraded (not shown). If a bias correction algorithm is
used, the observations are indirectly given more weight,
since they are allowed to influence the estimate twice:
directly through the difference yo

k − Hxf

k , and indirectly
through the bias. The latter allows the data to have a
longer lasting influence.

In the experiment where the bias is treated by applying
a correction to the pressure gradient using the BMN
scheme (Figure 4f), the spurious circulation does not
appear. This result highlights the merits of the BMN
scheme, and illustrates large sensitivity of the results to
the choice of multivariate relationship in the operator G
in (11). As pointed out by Burgers et al. (2002), the
bias may have its origins in the momentum equation
(resulting from inaccuracies in the wind field and in
the vertical mixing of momentum among others). If so,
the error should be ‘adiabatic’, since it is due to the
wrong redistribution of heat. The BMN is a way of
imposing adiabaticity in the assimilation of temperature
data, by assuming that the bias arises entirely from an
incorrect value in the pressure gradient terms, and using
the temperature increments given by the assimilation to
derive a correction to the pressure gradient.

It can be argued that in experiment TM , where the
bias acts only on temperature, no balance corrections are
made to the bias in salinity, and there is the potential
of disrupting the water mass characteristics. (Ricci et al.
(2005) show that the impact of salinity on the equatorial
velocity field is not negligible). In experiment T SM , the
bias in salinity is estimated by setting G = L = I in
Equation (15). Hence, the salinity bias is the running
mean of the salinity increments dx̃k for the state vector,
derived from the local T–S relationship and the unbiased
temperature increment. Results (not shown) were very
poor, with marked trends in salinity and sea level. In
this case the bias algorithm failed to stabilize the salinity
field, probably because the bias in salinity can not be
constrained by the temperature observations. A possible
reason for the poor results in experiment T SM may lie
in the nonlinear nature of the T–S relationship: the bias
in S obtained by accumulating the salinity increments of
the independent analysis cycles is not the same as if the
nonlinear T–S relationship were computed using the bias
in T. The G1S algorithm could still be used to impose
preservation of water mass characteristics for the bias
term, but has not been tested and further work is needed
for its correct implementation.

4.3. Sensitivity to the parameters in the time evolution
model

Figure 5 shows results from experiments conducted to
evaluate the sensitivity to the time evolution of the
bias term. Although in the experiments discussed here
the bias correction is only applied in the pressure
gradient, the bias in temperature used to derive the

pressure correction (b̂
f

k in Equation (13)) is shown. In
the left column, the time evolution of the estimated
b̂

f

k is shown at three different depths over the region
Niño 3. The time evolution of the 24-month running
mean of the temperature increment is shown in the right
column, together with the value of the mean assimilation
increment (shaded ticks on the right y-axis). Because of
the 24-month running mean, the time axis in these graphs
is limited to the period 1989–2000. The black solid line is
for experiment PM , the grey solid line is for experiment
PIF and the grey dashed line is for experiment PMF .
For reference, the thin black line shows the value that
the bias would have had in experiment E0, had it been
estimated using the same parameters as in PM (remember
that the online bias correction is not active in E0, i.e.
G = 0). The resulting values and behaviour of the bias
estimates are very different in the different experiments.
In the following section we try to use these diagnostics
to assess the quality of the resulting analyses.

One possible criterion for assessment is to require that
the estimated bias be consistent with the model prescribed
for the time evolution of the bias. For instance, if the
assumption is constant bias, then the resulting estimate
should exhibit convergence to a constant value: after this
value is reached, the analysis increment should be white
noise with zero mean. In general, the time average of the
temperature increment should be as close as possible to
zero.

At 30 m depth (Figure 5a), the bias in experiment PIF

(which assumes constant bias) does not converge. The
bias keeps increasing with time, and the resulting value
is of the opposite sign to the reference experiment E0
but with much larger amplitude. The 24-month running
mean assimilation increments (Figure 5b) are mainly
positive, and after 1996 exhibit large fluctuations in time.
The value of the mean temperature increment in PIF is
positive and has the largest absolute value. The resulting
velocity field is too weak compared to observations
(not shown). It can be concluded that at least for this
region and level, the time evolution of bias diagnosed a
posteriori for experiment PIF is not consistent with the
model for the bias correction term prescribed a priori
(α = 1 in Equation (12) would imply constant bias);
it seems as if the bias is overcorrected, resulting in
a change of sign. It is not clear at this point if the
pathological behaviour of PIF is caused by the infinite
memory (α = 1) or by the larger amplitude of the bias
(which is a function of α and γ ). However, Figure 5a
shows that the bias in the experiments with finite memory
is more stable; the evolution of the 24-month running
mean increment shows that at 30 m depth both PMF and
PM have less bias than E0.

At 50 m depth, the behaviour of the experiments is
more varied. From the point of view of the bias, experi-
ment PIF is still the outlier, and again it overestimates the
value of the bias, although not as clearly as at 30 m depth.
In fact, it shows the smallest absolute value of the mean
increment. The sensitivity of the results to the parameter
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Figure 5. Time evolution of the estimated bias, b̂
f

k in Equation(13), (left column) and 24-month running mean assimilation increment (right
column) at different levels in the Niño3 area. Values for the 1988–2001 average assimilation increment are shown on the y-axis of the right
panels. Shown are the results from experiment PM (thick solid black line), PIF (solid grey line), PMF (grey dashed line) and E0 (thin solid back
line). In the case of experiment E0 the bias is only a diagnostic; it is not corrected interactively. The bias values are in °C and the assimilation

increment in °C/timestep (i.e. °C/7200 s).

γ can now be appreciated by comparing the experiments
with finite memory: PM where γ is 0.1 (black line) to
experiment PMF , where γ is 0.3 (dashed grey line). Con-
sistent with a larger value of γ , experiment PMF exhibits
more time variability, and clearly adapts faster to a large
negative value after the change observed in 1998 (and
discussed in section 2), where it remains until the end
of the run. From this graph it is not easy to say if the
resulting value of the bias after 1998 is correct. There
is a hint that the 24-month running mean is going back
to zero after 1999, which is consistent with the stabiliza-
tion of the bias. In this experiment the high frequency
of the assimilation increments had smaller variance (not
shown). Experiment PM exhibits much smoother tem-
poral behaviour, as expected from the smaller value of
γ . The magnitude of the bias is smaller than that in
experiment E0, which reflects the positive impact of the
on-line correction. The mean assimilation increment is
also smaller than in E0, but larger than in PMF . In the
two experiments with finite memory the velocity field is
improved with respect to the reference experiment E0
(not shown).

At 100 m depth, in terms of mean absolute error, the
best estimator is the experiment with infinite memory.
The experiment with fast update (PMF ) follows closely,
and experiment PM underestimates the magnitude of the
bias (Figure 5f). Although in some areas PIF is good, it
tends to overestimate the bias, sometimes producing quite
pathological behaviour, and the experiments with finite
memory, as expected, tend to underestimate the bias.

There is no experiment that behaves best in all
locations, which suggests that the time parameters may
need to be spatially dependent. Without any further
theoretical insight, the spatial distribution of parameters
α and γ could be estimated empirically, together with b

(which appears in (15) but has not been discussed yet).

4.4. Sensitivity to the prescribed bias

In order to make good use of recently-developed and
future observing systems, such as the ARGO floats, it
may be desirable to have an a priori estimate of the
bias term. Otherwise, the arrival of new information
may induce discontinuities and spurious variability in the
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analysis of traditionally poorly observed areas. In our
simple model for the evolution of the bias (Equation 12),
the a priori bias estimate is given by b.

If observations are scarce, b may not be easy to
estimate. By gathering all the existing observations in a
climatology, such as the WOA98, it would be possible to
‘gain’ spatial coverage by sacrificing the time dimension
(and under the strong assumption that the system is
stationary). This is roughly the strategy followed here to
estimate the term b. The ocean model forced by ERA-40
climatology is nudged, with a time scale of three years, to
the WOA98 climatology. The time scale for relaxation is
an ad hoc way of introducing uncertainty for the WOA98
estimate. There may be more optimal ways of estimating
b, but we chose a simple one for demonstration purposes.
The relaxation terms in the T and S equations are taken
to provide the estimate of b, which would be used to
correct T and S directly. There is no pressure correction
in b (see experiment P

Mb
in Table I).

Figure 6 shows the vertical profiles of the 1987–2001
mean assimilation increments for region EQ3 in the
Central-Western Pacific (150 °E–170 °W, 5 °N–5 °S) and
for region EQATL in the Equatorial Atlantic (70 °W–
30 °W, 5 °N–5 °S). Shown are the results for experiments
E0 (solid back line), PM (black dashed line) and P

Mb
(in

solid grey). In region EQ3 (left panel of Figure 6), the
term b has visibly reduced the mean temperature incre-
ment in the upper ocean. This is a relatively well observed
area, where there should be enough observations for the
estimation of the on-line pressure correction. In spite of
that, the impact of the term b is comparable to the impact
of the on-line pressure correction, suggesting that in this

area, where the mixed layer is quite deep, the adiabatic
corrections are not enough to correct the bias temperature
and salinity.

The term b also improves the estimate of the Equatorial
Atlantic, both the mean value (reduced mean assimilation
increment in right panel of Figure 6), and the interannual
variability. The quality of the interannual variability can
be measured by the correlation of the analysed sea
level anomalies with those from the altimeter data. The
correlation period is 1993–2001. If no bias correction
is applied, the data assimilation degrades the correlation
(from 0.65 in an analysis with no data assimilation to
less that 0.4 in the experiment E0). The inclusion of the
on-line correction in pressure in experiment PM slightly
improves the estimate, but the correlation is still lower
than the no data assimilation case. By introducing the
term b in experiment P

Mb
the value of the correlation

increases to 0.8. The higher value of the correlation due
to the term b is an encouraging result.

As expected, poorly observed regions such as the
Equatorial Indian Ocean are better represented if the term
b is introduced (in the sense that the mean assimilation
increments are reduced). The Equatorial Indian Ocean is
only sensitive to the b term, while the on-line correction
to pressure has almost no effect (not shown).

5. Summary and conclusions

The presence of bias in an ocean data assimilation scheme
is a serious obstacle to the reliable representation of
climate by historical ocean reanalysis. This fact, common
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Figure 6. Vertical profiles of the 1987–2001 mean temperature assimilation increment for region EQ3 (left column) and for region EQATL (right
column). Shown are the results for experiments E0 (solid back line), PM (black dashed line) and P

Mb
(in solid grey). The units in the horizontal

axis are °C/timestep.
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to other reanalysis systems, is illustrated with examples
from the ECMWF operational ocean analysis systems
(System 1 and System 2).

In the Equatorial Pacific, the mean temperature assimi-
lation increment is different from zero, and shows a large
scale dipolar structure. The magnitude of the low fre-
quency component of the temperature assimilation incre-
ment (or bias) is comparable to the magnitude of the
higher frequency component, indicating that errors in the
first guess are correlated in time. The bias is not constant
in time, but exhibits some interannual variability.

Consistent with other assimilation systems, comparison
with TAO currents shows that the equatorial zonal veloc-
ity in the eastern Pacific is degraded when assimilating
temperature data, even when salinity is also corrected
by imposing preservation of the T–S relationship. The
degradation of the zonal velocity is associated with a spu-
rious vertical circulation underneath the thermocline. As
pointed out by BMN, the results suggest that the spurious
circulation can be related to the bias in temperature: the
error in the data assimilation has the opposite sign to the
error in an analysis where no data have been assimilated.

Data assimilation systems affected by bias are very
vulnerable to changes in the observing system. This fact
is illustrated by the large changes in the interannual
variability in the Equatorial Atlantic due to the sudden
changes in the observation coverage. The sustainability
of observing systems is therefore vital for ongoing and
future estimates of climate variability. To make optimal
use of new and existing observations it is necessary to
develop data assimilation algorithms that explicitly deal
with bias.

In this paper we have presented a generalized version
of the one-step DdS algorithm for on-line estimation and
correction of system bias. The modifications, based on
Dee (2005), include an explicit multivariate formulation
which allows the balance constraints for the bias to be
different to those for the state vector. In this context,
the correction applied to the pressure gradient proposed
in the BMN scheme can be considered as a particular
choice of balance relationship. Modifications have also
been introduced in the equation for the time evolution of
the bias, by inclusion of a memory term that accounts
for non-stationary bias, and a prescribed bias term that
can act as a first guess. The modified bias correction
algorithm has been implemented into the new ECMWF
operational ocean data assimilation system (System 3).
Various sensitivity experiments have been conducted with
different multivariate constraints and values of the param-
eters controlling time evolution. All the experiments span
the period January 1987 – December 2001 and use the
ENACT experimental setup. The focus of the discussion
is on the equatorial oceans. In all the experiments only
temperature data are assimilated.

Results reflect the sensitivity of the analysis to the
choice of multivariate formulation. In the Equatorial
Pacific, direct univariate correction of the bias in temper-
ature (as in Chepurin et al. (2005)) does not lead to better
analyses, and in fact can degrade the equatorial currents

by inducing large spurious vertical circulation. However,
if the bias is corrected using the BMN scheme by mod-
ifying the pressure gradient, the bias in temperature is
reduced and the velocity field is improved. Therefore,
some insight into the nature of the error is needed for
the formulation of the bias error statistics. If the error in
temperature is due to adiabatic processes that erroneously
redistribute heat, the bias term should reflect this adia-
baticity. Otherwise, it will introduce sources and sinks
of heat that may degrade the solution. Budget analysis
of the assimilation statistics are valuable tool to obtain
information about the nature of the error.

The results illustrate that the sensitivities to the param-
eters controlling the time evolution of the bias are quite
large. Generally, experiments with finite memory tend to
do better, at the expense of underestimating the size of
the bias. The assumption of constant bias, i.e. α = 1., can
lead to overestimation of the bias term and sometimes
to pathological results, with the bias term monotonically
increasing in time. This is the case in the upper levels
of the eastern Pacific, where the system fails to stabi-
lize, producing estimates that are worse than the non-
bias-corrected results. From a practical point of view,
underestimation of the bias is probably a safer option,
unless the stability of the system is well understood. Fur-
ther work is needed to develop a satisfactory framework
for treatment of time dependent bias, or more generally,
for treatment of errors at different time scales. There is
also a need for well defined metrics that allow us to assess
the mathematical consistency and physical validity of the
bias correction algorithms.

In order to avoid discontinuities in the ocean analysis
due to changing observing systems it would be desirable
to have an a priori knowledge of the system bias,
preferably obtained using independent data. For instance,
the information about the mean dynamic topograpy
provided by the gravity missions GRACE and GOCE
could in principle provide a first estimate of the bias.
Using a prescribed bias term is a way of extrapolating
observation information into the past. In this way the
geoid information can be exploited in ocean reanalysis
even for time periods preceding the gravity missions.
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NOTE

1. More comprehensive historical observational data sets are now
available, such as that prepared as part of the ENACT project
(Ingleby and Huddleston 2006), used in section 4.
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Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, McNally AP,
Mahfouf J-F, Morcrette J-J, Rayner NA, Saunders RW, Simon P,
Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J.
2005. The ERA-40 Reanalysis. Q. J. R. Meteorol. Soc. 131 Part B:
2961–3012.

Vialard J, Weaver AT, Anderson DLT, Delecluse P. 2003. Three-
and Four-Dimensional Variational Assimilation with a General
Circulation Model of the Tropical Pacific Ocean. Part II: Physical
Validation. Mon. Wea. Rev. 131: 1379–1995.

Vialard J, Vitart F, Balmaseda MA, Stockdale TN, Anderson DLT.
2005. An ensemble generation method for seasonal forecasting
with an ocean-atmosphere coupled model. Mon. Wea. Rev. 131:
1379–1395. See also ECMWF Technical Memorandum No 417.

Vidard A, Piacentini A, Le Dimet F-X. 2004. Variational Data Analysis
with control of the forecast bias. Tellus A 56(3): 177–188.

Vidard A, Anderson DLT, Balmaseda MA. 2005. Impact of ocean
observation systems on ocean analysis and seasonal forecasts.
ECMWF Technical Memorandum No 460.

Weaver AT, Vialard J, Anderson DLT. 2003. Three- and Four-
Dimensional Variational Assimilation with a General Circulation
Model of the Tropical Pacific Ocean. Part I: Formulation, Internal
Diagnostics, and Consistency Checks. Mon. Wea. Rev. 131:
1360–1378.

Weaver AT, Deltel C, Machu E, Ricci S. 2005. A multivariate balance
operator for variational ocean data assimilation. Q. J. R. Meteorol.
Soc. 131: 3605–3625.

Copyright  2007 Royal Meteorological Society Q. J. R. Meteorol. Soc. 133: 167–179 (2007)
DOI: 10.1002/qj


